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Abstract-This paper considers simultaneously the phenomena of forced and natural flow effects 
over an isothermal wedge. The analysis is restricted to situations in which the natural convection 
effects may be considered as a perturbation of the purely forced flow situation. Using this technique, 
a number of wedge angles are considered for laminar boundary-layer type flow. A Prandtl number of 
0.73 was used and numerical results are presented for calculating surface shear and heat-transfer rates. 

Boundary-layer separation is also considered. 

4 
NOMENCLATURE 

coefficient of volume expansivity 

gx, 
gY, 

component of gravity in the x-direction; 
component of gravity in the y-direc- 
tion; 
static pressure ; 
temperature; 

Y, 
a, 
if% 

velocity component in the x-direction; 
velocity component in the y-direction; 
co-ordinate along the wedge surface, 
starting from the leading edge; 
co-ordinate normal to plate surface; 
thermal diffusivity; 
measure of included wedge angle (i.e. 
n-/I equals wedge angle in radians) ; 

q, 62, expansion parameters [see equations 
(19) and (20)]; 

A viscosity; 
V, kinematic viscosity; 
PY density. 

Subscripts 
e, refers to flow region external to bound- 

ary layer; 
W, refers to wall condition. 

INTRODUCTION 

THE SUBJECT of combined forced and natural 
convection has recently been investigated in 
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some detail. This flow regime is concerned with 
circumstances wherein both the natural and 
forced mechanisms of the flow must be con- 
sidered simultaneously. The natural flow origin- 
ates from body force variations in the fluid, 
whereas the forced convection is generally in- 
duced by moving a body through a quiescent 
fluid or by forcing a fluid past a stationary body. 

For the mixed convection flow over a flat 
surface a number of important investigations 
have been made. Tanaev [I] published an 
approximate analytical analysis for laminar, 
compressible, mixed flow of air over an inclined 
flat plate. The external flow was assumed parallel 
to the plate for all plate inclination angles. His 
analysis is for low Mach numbers and for 
situations where the buoyancy effects could be 
considered small relative to the forced flow 
effects. 

Acrivos [2] employed the Pohlhausen-von 
Kkrman momentum integral method to con- 
sider incompressible laminar flow over a vertical, 
isothermal plate with buoyancy effects included. 
The form of the velocity and temperature 
profiles for the combined convection were 
assumed to be the sum of the purely forced and 
natural convection profiles. This assumption is 
suspect however due to the basic non-linearity of 
viscous flow problems. Numerical results were 
reported for the heating and cooling of upward 
flow past the vertical plate for Prandtl numbers 
of 0.73, 10 and 100. The influence of natural 
convection on separation showed that heating of 
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the upward flow stabilizes the boundary layer, 
whereas cooling hastens the appearance of 
separation. 

Sparrow and Gregg [3] attacked the isothermal 
vertical plate problem. considered by Acrivos, 
by a different approach. They perturbed the 
equations of the purely forced flow circumstance 
to include small effects of buoyancy. This study 
considered both the cases where the buoyancy 
effects are parallel and opposed to the external 
flow. The analysis was restricted to laminar 
boundary-layer flow and calculations were 
made for Prandtl numbers of 10, 1 and 0.01. 
For fluids with larger Prandtl numbers the 
effects of buoyancy were found to be of smaller 
importance. 

Szewczyk [4] also investigated combined flow 
over a vertical isothermal surface, considering 
two types of perturbations. First, purely forced 
flow was perturbed to include small buoyancy 
effects. This portion of the analysis is similar to 
that of [3]. However, Szewczyk considered as 
well the second-order term of the perturbation 
series. The second part of the analysis considers 
a perturbation of the natural convection flow to 
include small forced flow effects and the second, 
as well as the first-order perturbation term is 
included. Results were tabulated for Prandtl 
numbers of O-01, 0.72, 1.0, 5.0 and 10-O. 

The case of laminar, mixed flow over an iso- 
thermal, horizontal flat plate has been investi- 
gated by Mori [5] and by Sparrow and Minko- 
wycz [6]. Mori considered the case for a Prandtl 
number of 0.72 while Sparrow and Minkowycz 
considered Prandtl numbers of 0.01, 0.7 and 10. 
In both [5] and [6] the technique of perturbing 
the purely forced flow equations to include 
small effects of buoyancy was applied. Both 
investigations present formulae for calculating 
the shear stress and heat-transfer rate in the 
mixed flow regime. 

Gill and Del Case1 [7] considered the influence 
of buoyancy for flow over a horizontal flat plate 
with a non-uniform temperature at the surface. 
They found that the boundary-layer equations 
had a similarity solution for a surface tempera- 
ture varying as one over the square root of 
distance from the leading edge. With this surface 
condition, however, there is no local heat 
transfer. The physical significance of this 

situation is not apparent. Prandtl numbers of 
0.01, 0.72 and 10 were considered. For the plate 
temperature greater than that of the fluid 
external to the boundary layer, the parallel 
velocity component was found to increase and 
temperature to decrease for flow over the top 
of the plate, relative to the corresponding forced 
flow results. The opposite effects were en- 
countered for the bottom of the plate. These 
results are in agreement with those found in [5] 
and [6]. It was similarly observed that buoyancy 
has less influence as the Prandtl number is 
increased. 

The first investigation concerning mixed flow 
over a wedge was that of Sparrow, Eichhorn 
and Gregg [8]. They obtained a solution for the 
mixed convection boundary-layer flow for 
several special cases under which a similarity 
transformation was possible. They found that 
isothermal and uniform-flux surface conditions 
resulted in similarity transformations for vertical 
wedges having included wedge angles of 120” and 
135”, respectively. In their analysis they neglec- 
ted buoyancy effects in the direction normal to 
the wedge surface (this assumption is later 
discussed in the analysis). The Prandtl number 
was taken to be 0.73 for all cases considered. 

Brindley [9] considered an approximate tech- 
nique to solve the ordinary differential equations 
encountered by Sparrow, Eichhorn and Gregg. 
His primary intent, however, was the comparison 
of his approximate method with respect to 
known numerical solutions. 

The present communication considers mixed 
flow over isothermal wedges for a variety of 
included angles. The regime considered is 
incompressible, laminar, boundary-layer flow 
with a Prandtl number of 0.73. Two types of 
wedge orientation will be treated. The first case 
will be for horizontal wedges, i.e. the plane of 
symmetry normal to the body force, shown in 
Fig. 1 as Case A. The second case is for vertical 
wedges, shown in Fig. 1 as Case B. 

For the case of the purely forced convection 
flow over a wedge, Falkner and Skan [lo] re- 
duced the general boundary-layer continuity and 
motion equations into a single ordinary differ- 
ential equation by the proper choice of a 
similarity variable. Later, Eckert [ll] trans- 
formed the boundary-layer energy equation, for 



COMBINED FORCED AND NATURAL CONVECTION FLOW 45 

1 i 1 

i 

CASE 0 

I 
I4 

FIG. 1. Wedge configurations. 

the purely forced flow, into an ordinary differ- 
ential equation by using the same similarity 
variable found in the Falkner-Skan treatment. 

As previously indicated, a similarity transfor- 
mation for the mixed flow over a wedge is only 
possible for two special wedge cases. Therefore, 
the method used by the present writers is to 
perturb the Falkner-Skan and Eckert equations 
to include small effects of buoyancy. By this 
technique a number of the important mixed 
flow phenomena not amenable to similarity 
solutions are considered. 

ANALYSIS 

With reference to Fig. 1, the boundary-layer 
equations are : 

continuity: 

(1) 

motion in the s and y direction: 

energy : 

%t at @t 
uz+L..G=aay3 

with boundary conditions : 

y=o; u = G = 0, t = tu, 

y-f co; u --f G?(x), t+ te 

where 

(4) 

(5) 

X = pg,body force in the x-direction (6) 

Y = pgybody force in the y-direction (7) 

These equations are valid for incompressible 
flows with Reynolds numbers of such magni- 
tude that the boundary-layer approximations are 
valid. However, to account for buoyancy effects, 
we may consider density variations in the body 
force terms, yet maintaining the incompressible 
equation for fluids for which the volume ex- 
pansivity is small. Thus, the density, except in the 
body force terms, will be taken equal to the exter- 
nal flow value (i.e. p,). 

Equations (6) and (7) may be rewritten such 
that: 

x= pg.z = gz K/J ~- Pe> + Pel (8) 

y = lx?/ = ‘FY KP ~- Pe) + PGI (9) 

where 

(p - pp) = pp ij’(tlrs te) 0 for t -- te small 

and 
t - te 

8=--- 
tu; - te 

Substituting equations (8) and (9) into equations 
(2) and (3) and equating the cross derivatives of 
p from the two equations (@/a~ # constant) 

g, B(t, - te> g (10) 
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We define a stream function, #(x, y), which 
identically satisfies the continuity equation 

Equations (10) and (4) may be written in terms 
of the stream function as: 

a* a8 a* as a20 
---~~ --=a- 

iiy ax ax ay ap (14) 

The boundary conditions corresponding to (5) 
are: 

In the case of purely forced flow u/u, is 
simply a function of 7 where 71 = (y/2)d(ue/vx) 
and u,(x) = Cx” is the velocity external to the 
boundary layer as determined from potential 
theory. For our case u/ue is no longer a function 
of 7 and it was found necessary to introduce the 
following transformation of variables (x, JJ) + 
(~1, ~2, T), so that a perturbation method could 
be applied which considers both the %jay and 
aejax terms simultaneously in equation (13). 
Expanding U/U, then in a double power series 
about l 1 ~2 ~2 = 0 and integrating equation (1 I) 
for +J we find 

c2(x) Cl(~)1 i . (16) 

Similarly for 0 we have 

0 = 00(V) + [d4fwd + E211(7)1 + . . (17) 

Where cl(x), EZ(X) are expansion variables 
(assumed functions of x only) and,fo(T), Fr(y), 
Gl(& 00(v), HI(T), I&), etc. are the expansion 
coefficients. Since we are considering only a 

first-order perturbation analysis, only the first 
three terms in equations (16) and (17) will be 
considered. The boundary conditions (15) are 

~zO:fo_f;;-zO, tl”__ 1 7 

Fl = F; = 0, HI -== 0 I 

GI = G; = 0, Zl = 0 
I 

7j --f co ; f;’ -7% 2, ,t;” + 0, 00 -A 0 
! (18) 
) 

F; --f 0, F;'+ 0, Fl + 0 
I 

ZZ1-t 0, Zl-tO J 
Substitutions of equations (16) and (17) into 

equations (13) and (14) yields the form of the 
expansion variables <I(X) and Q(X). They are 
chosen so that the expansion coefficients FI(T), 
Gr(y), HI(~), and 11(v) are indeed functions of 
17 only. Hence: 

where 

Gr(x) l t(x) = .__..._. 
R&x) 

GM 

(19) 

__._ 
E2(x) = j&5/2(x) (20) 

Gr(x) = f !@!(t, - “)T3 
v2 

Re(x) = "" 

The & sign above is discussed in the Appendix. 
With ~1 and ~2 as given in equations (19) and 

(20), one obtains ordinary differential equations 
by comparing like powers of the expansion 
variables in both the motion and the energy 
equations. Setting 

gz = + Y lgl and g, = + X lgl 

(see Appendix for values of A and r) we obtain 
from the motion equation three ordinary 
differential equations. These may be integrated 
once between 7 and co to yield: 

&” + (m + 1)fo.h” + 8m 1 -‘$ = 0 (21) 
i 1 

Fl"'= 8y 80 + 2f,’ F,’ - (m -t 1)fo F;' f 
3(m - l)fi’Fr (22) 
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G;” = (1 - m) (8h) (7 00 + i 80 drl) + 

(4m - 2)f,” Gr + (1 - I) G; f; - 

(m + l)fo G;’ (23) 

Similarly, using equations (19) and (20) and 
substituting equation (17) into equation (14) and 
comparing like powers of the E’S, one obtains 
from the energy equation the equations for the 
coefficients : 

19:’ + (m + 1) (Pr)fi 0; = 0 (24) 

Hi’ = (Pr) (2 - 4m) HI& - (Pr) (m i- 1) &$I 

- (Pr) (3 - 3m) 0; Fl 

(25) 

I;’ = (Pr) (1 - 5m) I1 f,’ + 2 (Pr) (2m - 1) 0; Gr 

- (Pr)(m + l)I;fo 

(26) 

The solution to equations (21), (22), (23), (24), 
(25) and (26) with boundary conditions (18) yield 
the coefficients in equations (16) and (17). 

It is seen that equation (21), together with 
boundary conditions (18), is the Falkner-Skan 
[lo] equation. Similarly, equation (24) is the 
Eckert [ 111 energy equation. 

In summary, the velocity field for the com- 
bined forced and natural convection flow is 
found from differentiation of equation (16) to 
yield : 

The temperature field for the combined pheno- 
mena from (17) is : 

eh c2, d = e,(7) + 44 md 

The local wall shear stress and heat-transfer rate 
for the mixed flow becomes, making use of 
equation (20) : 

(30) 

In equations (27), (28), (29), and (30) the + 
sign is used when ~1 and EZ are of similar sign 
and the - sign is used when l 1 and 6s are of 
different sign [see equations (19) and (20) and 
Appendix]. 

RESULTS 

Equations (21), (22) (23), (24), (25) and (26) 
with boundary conditions (18), were solved for 
wedge angles ranging from 1.0 2 /3 2_ -0.190. 
The Prandtl number, Pr, was taken to equal O-73, 
a value typical for air. The solutions were found 
numerically by using the Runge-Kutta method 
on a Burroughs 220 computer. The error in the 
calculations was estimated by changing the 
interval of integration. The calculations were 
thus found to be accurate to the sixth significant 
figure and are shown tabulated to the fourth 
decimal place. 

With reference to equations (27), (28), (29) 
and (30), it was found that for some wedge 
angles in both Cases A and B the Gr/d[Re(x)] 
and 1r/v’[Re(x)] terms were insignificant in 
magnitude relative to the corresponding Fl and 
Hi terms in view of the large Reynolds number 
for boundary-layer flow. This was found true in 
Case A for wedge angles of p 2 0.5 and for all 
the wedge angles considered in Case B. How- 
ever, in Case A, for wedge angles of j? < 0.5, the 
Gr/d[Re(x)] and &/z/[Re(x)] terms, with the 
exception of the horizontal flat plate case, were 
found to be a factor of l/d[Re(x)] times smaller 
than the Fl and HI terms but tended to offer a 
small contribution in equations (27), (28), (29) 
and (30) for Reynolds number in the lower 
portion of the permissible boundary layer range. 
In the case of the horizontal flat plate, the 4 and 
HI terms become zero and the Gi/z/[Re(x)] and 
Ii/v’[Re(x)] terms represent the only influence of 
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buoyancy. Thus for /3 2 0.5 in Case A and for 
all /3 in Case B, equations (22) and (25) were 
alone calculated. For the remaining wedge 
angles in Case A equations (23) and (26) were 
in addition calculated. 

Figure 2 shows the mixed flow velocity and 
thermal distribution for a /3 = 0.5 wedge of 
Case A where l 1 = -0.3. The ~1 = 0 curve 
represents the purely forced flow distribution 
[i.e. Gr(x) = 01. 

I.0 ?) 2.0 3.0 

FIG. 2. Velocity and temperature profiles for a ,8 = 0.5 
wedge for Case A. 

If the purely forced flow local shear stress and 
heat-transfer rate are denoted by TO(X) and 
4:(x), the ratios of the local shear stress and 
local heat transfer for the flow with buoyancy 
to the purely forced convection flow can be 
obtained. 

(31) 

where the + sign is used when l 1 and ~2 are of 
the same sign and the - sign is used when ~1 
and ~2 are of opposite sign (see Appendix). 

Equations (31) and (32) can be integrated 
over a length, L, of the wedge surface to obtain 
the drag and heat-transfer rate for the portion of 
the wedge surface 0 :_< x -.: L. These quantities 
are written in terms of the total drag coefficient 
and Nusselt number to yield: 

CD 

CDLl 
- [I + q(L)(3m -I- 1) 

F;’ 
-,, 
.fo (3 - m) 

1 
‘-,I;“(2 

!33) 

NU Hi __ = 
NUO 

1 + E,(L) (3m + 1) -,------- 
8,(3 - 3m) 

* _ ,- ._.__ -3 _ _~.~ 
0,(2 - 4m) v’[Re(L)] 

(34) 

where the subscript “0” refers to the purely 
forced flow quantity and 

2 “s T(X) dx 
CD = ee%z).- -drag coefficient 

: Q”(x) dx 
Nu = 0---p -Nusselt number 

(tW - te) k 

Again the + sign is used when ~1 and ~2 are of 
the same sign and the - sign is used when l 1 and 
~3 are of opposite sign. Values of 

are shown tabulated for the appropriate range 
of wedge angles. 

The effect of buoyancy on separation may he 
determined from the computed results. The 
condition for boundary-layer separation from 
the wedge surface is met when the flow tends to 
reverse at the interface. This condition first 
occurs when 

al.4 

( 1 Q 1, IJ 
~: 0 (35) 

For pure forced convection (in the absence of 
buoyancy effects) Hartree found that this con- 
dition was met for a wedge of included angle of 
--35.64” or /3 = --0.1988. 
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Table 1. Tabulated results for Case A 
-___ -_- ^. 

B cfo’),_o @o’L+o (k;“#$‘),,,, (Gl”/fo”I,,o (~I’/&I?,=o (zo’i@o’h,-o El,(X) 

1.0 4.93035 - l&I836 -0.4952 0~0000 2.0194 

0.8 4.09064 -0.90448 -0.6361 -0.0678 1.5721 

0.7 3.71805 -0.86006 -0.6928 -0.1359 14434 

05 3.02979 -0.78080 -0.7547 -0.1737 1.3203 

0.1 1.70353 --0.63561 -0.4391 - 3.0849 -0.1048 - 0.7487 2.2774 

0.0 1.32823 --059418 - oxIOoo -5.0737 -0moo -1.1959 (O.l971)2/[Re(x)] 

-0.1 O-88128 -0.54179 - I.0520 - 10.5898 -0.2196 - 2-2566 0.9506 

-0.15 059024 -0.50390 - 2.8881 -21.1421 -05300 - 3.9062 0.3462 

-0.174 0.39642 - 0.47570 - 6.2807 -42.1402 - 0.9772 - 6.4970 0.1592 

-0.180 0.34853 -0.46821 -7.9394 -52.8078 -1.1624 -7.6153 0.1260 

-0.185 0.29479 -0.45940 -10.7212 -70.9885 -l&+07 -9.3283 0.0933 

-0.190 0.23168 --044880 - 164464 - 109.195 -1*9304 - 12.4069 0.0608 

In the case of mixed flow, values of ~1 for Table 2. Tabulated results for Case B 

which equation (35) is satisfied is found from --- 
equation (27) as B m”lfo”>,_o (HI’/~O’),_O qw 

where E&X) is the value of or that causes 
separation of the flow. Values of aa are 
tabulated for Cases A and B. For purposes of 
iIlustration, the 

term is neglected in equation (36), except for 
p = 0 in Case A. 

In Fig. 3 are shown plotted velocity distri- 
butions for the wedge angle of ,tI = -0.180 for 
Case A. The separation tendency can be seen as 
~1 is increased from zero to the value ~1, where 
the initial slope is zero. For E&Y) > cl(x) 
= 0.1260, reversed flow is shown. 

For all the other wedge profiles the local shear 
stress and heat transfer are seen to be increased 

HM--I) 

1.0 00)OO O*OOOO 00 

0.8 - 0.2067 -0.0336 4.8379 

0.7 -0.3530 - 0.0692 2.8329 

0.5 -0.7547 -0.1737 1.3203 

0.1 - 2.4973 -05961 0.4004 

0.0 -3.6526 -0.8392 0.2738 

-0-l - 6-6426 - 1.3867 0.1505 

-0.19 -53.4595 - 6.2748 0.0187 

by the effects of buoyancy when ~1 < 0 and 
decreased for E > 0 (see Appendix). 

The tabulated values show that only for values 
of E&X) > 0 do the effects of buoyancy con- 
tribute to the separation phenomena. These 
values thus set an upper limit to the G~(~)~~ez(~~ 
parameter such that flow separation does not 
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FIG. 3. Separation phenomena for a p = -0.180 wedge for Case A. 

occur. Values of E&C) can apparently have any 
negative value and not influence separation. 

CONCLUSIONS 

From the results, certain generalizations are 
possible concerning the effects buoyancy has in 
the mixed flow regime. 

One of the more interesting matters to con- 
sider is the manner in which thermal changes in 
the x and y body forces of the fluid elements 
influence the flow. In equation (lo), it is seen 
that the %)/ay term stems from changes in the x 
body force while the 80/8x term stems from 
changes in they body force. By non-dimensional- 
izing these terms and applying the conventional 
boundary-layer arguments, it is found that the 
ratio of these terms become 

gz ~(t~ -- fe) aelay .~_~~ = 0 FF”“] (37) 
gz ~(t~ - te) aejax 

where 0 denotes “order of magnitude”. 
For the wide range of wedge angles where 

gz N O(gy) (remembering that Re(x) 9 1 for 
the boundary layer equations to be valid), it is 
seen that the EMjay term, or the contribution due 
to changes in the ‘x component of the body force, 
is far greater than the M/ax ,term which comes 
from chsnges fin the y component. 

Since the Ajax term in epuation (IO) comes 
from different&ing eQuation (3) with respect to 
x, it is also seen the a(@/ay)/ax will likewise be 
very small. This means, as is the case in the 

purely forced flow, that the pressure gradient in 
the x-direction is essentially that of the invisid 
free stream value. It is noted that the free stream 
pressure gradient is taken as the same for both 
the mixed and forced flow. 

From equation (8), however, it is seen that the 
body force in the x-direction is different than 
that of the purely forced flow body force. When 
tw > te, this body force is seen to be less and for 
tw < te it is seen to be greater than the purely 
forced flow value. Since the x-direction pressure 
gradient in the boundary layer is essentially the 
same in both flows, the fluid elements in the 
combined flow experience a net retarding or 
acceleration force not experienced in the pure 
flow. This net force is thus due to the weakening 
or strengthening of the x-direction body force 
with respect to the pure flow values. 

For flow circumstances where g, is in the 
negative x-direction and the wedge is heated, 
(i.e. tw > t& then the x-direction body force is 
lessened by decreasing density and the fluid 
appears to have a net force in the positive x- 
direction which tends to speed up the flow. The 
opposite effects would then be expected if gr 
were positive or if rw < te. 

It is important to note that a net convective 
force does not exist in the y-direction. The 
reason for this is due to the boundary-layer 
approximation made in equation (3). Thus the 
only .way changes in the y-body force can in- 
fluence the flow is by fhe small changes in the 



x-direction pressure gradient relative to the 
external flow gradient. For the larger wedge 
angles, this effect is negligible compared to the 
effect induced by the changes in the x body force. 
However, in Case A, for the smaller wedge angles, 
the x body force becomes relatively smaller and 
the changes in the pressure field, due to the 
variation in the y body force, tend to offer a 
slight contribution or correction term (usually 
in the third significant figure) when the results 
are applied. For the case of the horizontal flat 
plate, the x body force becomes zero and the 
small effect of the variation of the pressure field 
is the only way buoyancy can influence the flow. 
However, the effect is still l/d[Re(x)] times 
smaller than for a comparable effect in the other 
angles. 

From the Tables, certain conclusions can be 
drawn concerning the influence buoyancy has on 
boundary-layer separation. As was previously 
indicated, for the case of the purely forced 
flow Hartree found that only wedges where 
p < -0.1988 caused the boundary layer to 
separate from the wedge surface. The presence 
of buoyancy, however, is seen to cause separation 
for any wedge angle provided that 

El(X) > Q(X) > 0, 

within the limits of this perturbation analysis. 
It can be concluded that positive cl(x) tend to 
bring the flow closer to separation whereas 
negative values of cl(x) tend to stabilize the 
flow. The negative wedge angle flows are much 
closer to a separation condition than the positive 
wedge flows and much smaller values of Q,(X) 
are required to cause separation. 

Several of the specific cases included in this 
analysis have been treated by other investigators. 
The vertical plate problem, considered by [2], 
[3], and [4] corresponds to Case B, Fig. I, where 
the included wedge angle, p, is zero. The present 
results are in agreement with those previously 
reported. Likewise, the horizontal flat plate case 
considered by [5] and [6] agree with the results 
obtained for p = 0 in Case A. 

The wedge having an included angle of 120” 
was not calculated in this work. Therefore, the 
similarity analysis by Sparrow, Eichhorn and 
Gregg [8] for this wedge angle was compared to 
our results for B = 0.7 or T& = 126”. With 
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consideration given to the slight change in 
wedge angle, the results were found to be in 
excellent agreement. Since the Sparrow, Eich- 
horn and Gregg analysis is valid for all values 
of Q(X), some idea of the permissible magnitude 
of this parameter was gained by comparison of 
results. As was expected, for values of cl(x) < 1, 
agreement between the perturbed and exact 
solution was found to the third significant figure. 
For values of 61(x) > 1.0, however, the higher 
order terms in equations (16) and (17) become 
increasingly important. Therefore, it may be 
expected that the results presented herein are 
reliable at large values of a(x) only as indica- 
tions of the effect of buoyancy on forced 
convection. 
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APPENDIX Thus for Case B: 
It is necessary to evaluate the constants y and 

h defined by 

gz = & Ylgl (38) 

gY = i hlgl (39) 

For Case A, Fig. 1, the components of gravity 
are seen to be 

‘4 
y = cos z t i 

h = sin T 
i 1 

g, = rt ylgl = f lgl sin [:j (40) 

gy = f hlgl = rt lgl cos (“2”) (41) 

Thus for Case A: 

r/3 
y = sin 2 

( 1 
(42) 

x = cos ; 
( 1 

(43) 

For Case B, Fig. 1, the following is seen to be 
true 

As a matter of convenience, h and y arc 
always taken as positive. In equations (38) and 
(39) the f sign is determined from the case 
being considered. When the direction of gZ is 
opposite to that of the increasing x-axis, the 
- sign is used in equation (38). When gZ is in 
the direction of increasing x, the i- sign is used. 
In a similar manner, the + sign of g,, equation 
(39), is determined by the orientation of gj, 
relative to the y-axis. 

The same holds true for equations (19) and 
(20). Since 

Gr(x) = * klmJ - fc.1 x3 
“2 

it is seen that the + sign is used in equation (19) 
when g, is positive and the - sign used when 
g, is negative. In equation (20) the + sign is 
used when g, is positive and the - sign when 
g, is negative. 

gz = f ylgl = + lgl cos (T) (44) 

g, = & hlgl = * lgl sin (;) (45) 

These remarks on the sign convention lead 
to the following generalizations. For tzv :, te. 
the sign of ~1 is the same as the sign of g,. 
Similarly, the sign of EZ is always the sign of 
g,. The opposite holds true for both l 1 and r? 
when te > tzo. 

(471 

R&urn&Cet article considkre simultantment les phtnomknes des effets de l’tcoulement force et 
natural sur un diitdre isotherme. L’analyse est restreinte aux situations dans lesquelles les effets de 
convection naturelle peuvent Btre consid&% comme une perturbation de la situation avec un koule- 
ment purement for&. En utilisant cette technique, un certain nombre d’angles de dkdres est consid& 
nour un kcoulement du tvae couche limite laminaire. Un nombre de Prandtl de 0,73 a ttC employ6 
c- 

et les r&ultats numkriquei sent prksentks pour calculer la tension de cisaillement pariktal et les flux de 
transport de chaleur. Le dkcollement de la couche limite est aussi considCr6. 

Zusammenfassung-Diese Abhandlung betrachtet gleichzeitig die Vorgtige bei erzwungener und freier 
KonvektionsstrSmung iiber einen isothermen Keil. Die Untersuchung beschrlnkt sich auf Zustlnde, 
bei denen die freieKonvektionalseineStBrungderreinenerzwungenenKonvektionsstrBmung betrachtet 
wird. Mit dieser Technik werden eine Anzahl von Keilen mit verschiedenen Winkeln bei Strijmungen 
mit laminarer Grenzschicht untersucht. Die Prandtl-Zahl betrug 0,73. Fiir die Berechnung der Schub- 
spannung und des Wlrmeiiberganges werden numerische Ergebnisse aufgefiihrt. Die Grenzschicht- 

abliisung wurde ebenfalls beriicksichtigt. 

AHAOTIXQESS-B CTaTbe HCCJIe~yKJTCH RBJBHHH COBMeCTHOti BbIHyX~eHIfOli II CBO6ORHOti 
KOHBeKIJMEl IIpll 06TeKaHHLZ I’I30TepMMWCKOrO KJILIHB. TeOpeTWieCKMfi aHaJnIa orpaHIlqeH 
CJIyIaeM, KOrAa 3@$WKTbI CBO6OAHOti KOHBeKLWI PaCCMaTpGIBaIoTCJI KaK BO3M~IIWIWI WICTO 
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BbIHJWAeHHOrO TeqeHHFI. c IIOMOIQbIO AaHHOti MeTOAHKH HCCJIeAOBaH pXA )'rJIOB KJIIiHa npH 

TeYeHIlll TElna JIaMMHapHOrO nOl'paHHYHOr0 CJIOfI. kiCnOJIb3OBaJIOCb YIICJIO npaHATJTJ2 0,73. 
~~~Bo~RT~HYH~~~wKx~HH~~~ ~a~HbIe~jI~pac~eTanoBepxHoc~Horo~peH~~~~ennoo6meHa. 

PaccMoTpeH TaRme 0~pbIB norpamsHor0 CXOR. 


